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The relation connecting the shape and volume of a bubble (three-dimensional prob- 
lem) is studied by a combination of analytical and numerical methods. The mech- 
anism for separation of a bubble from a wetted solid surface is explained and a 
formula for the separation diameter derived. 

The explanation of the mechanism for separation of vapor bubbles from a solid surface is 
extremely important in the study of boiling and other physicochemical processes [i, 2]. Rough- 
ness and wettability of the heater and the rate of bubble growth have a fundamental effect on 
separation characteristics. The rate of growth, which takes on values of a broad range for 
various boiling conditions, determines the relative role of dynamic effects in the confinement 
of bubbles to a solid surface and in their separation. According to estimates made by a num- 
ber of authors [1], the magnitude of the inertial force of a dynamic reaction of a fluid de- 
pends directly on the Jacob number and, consequently, on the ratio AT/p'. Hence it is clear 
that one can neglect the hydrodynamic reaction in comparison with static forces which are 
practically independent of the temperature head AT and the vapor density p' for small AT (ini- 
tial stages of bubbling boiling) at sufficiently high external pressures. 

The kinetics of bubble (drop) growth and separation even in the simpler than general case 
of slow increase in volume -- because of evaporation of liquid (condensation of vapor) -- lacks 
a satisfactory theoretical explanation although this problem has been studied for a long time 
[3-16]. 

The application to the solution of this problem of numerical methods alone may not give 
a physically complete picture of the variation in bubble shape, particularly near separation. 
An exact analytical solution, which has been successfully carried to completion for the two- 
dimensional problem [9, i0], entails very great, and possibly insurmountable, difficulties in 
the three-dimensional case. Because of this, a combination of the analytic method and a num- 
erical solution specially performed on a computer," the data from which was used to justify 
approximations and check expressions obtained, was employed in this work to study the shape 
characteristics of three-dimensional bubbles and the mechanism for their separation from a 
horizontal plane. 

During quasistatic growth, the bubble has a shape close to the equilibrium shape at each 
moment, which ensures a minimum in the sum of the gravitational and surface components of the 
free energy F for a given bubble volume V. Because of the symmetry of the problem, a bubble 
on a horizontal plane is a figure of rotation around the vertical axis (Fig. la) of some con- 
tour y(x) which is determined from the solution of the Euler equation for the corresponding 
variational problem of a relative extremum [7]: 

1 d xy' -- ~ Y (1) 

x dx  (1 + y,~)l/z a 2 

I n  Eq.  ( 1 ) ,  w h i c h  i s  one  o f  t h e  f o r m s  o f  t h e  f u n d a m e n t a l  e q u a t i o n  o f  t h e  t h e o r y  o f  c a p i l l a r i t y  
a = ( o / ( p  --  p , ) g ) l / 2  i s  t h e  c a p i l l a r y  c o n s t a n t  and  k i s  an  u n d e t e r m i n e d  L a g r a n g i a n  m u l t i p l i e r  
(with the coefficient a). Since, as is easily verified, the expression on the left side of 
Eq. (i) can be represented as the sum of the two principal curvatures of the interface be- 
tween the liquid and vapor phases, the quantity ~ is equated to twice the average curvature 
of the bubble surface at the base (y = 0). In accordance with the treatment of Lagrangian 
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Fig. i. a) Bubble contour and coordi- 
nate system; b) matching of contour 
apices for numerical integration, ~i > 

~2 > ~ .  

multipliers in problems of a relative extremum, ~ = --(dF/dV)/o and as the bubble grows, 
increases starting from infinitely large negative values. The size of a bubble for which 

= 0 is critical: the total energy reaches a maximum and the bubble "crosses" the potential 
barrier. As shown by analysis, however, separation of a bubble is not directly related to 
the vanishing of %, but to the breakdown of the equilibrium surface shape. 

We first consider some obvious results which can easily be obtained for the two-dimen- 
sional case. Interest in the dynamics of two-dimensional bubbles has been maintained up un- 
til the present time [9, i0, 14, 16]. This can be explained, first, by the fact that, as 
shown by experiment, one can arrive at qualitatively correct conclusions about the behavior 
of ordinary three-dimensional bubbles on the basis of the solution of the two-dimensional 
problem, and, second, by the fact that two-dimensional bubbles (drops) are not pure abstrac- 
tions and can be realized, for example, in cases where the vapor--liquid system is bounded by 
two adjacent vertical planes (narrow slit) [16]. An exact solution of the two-dimensional 
problem with the help of elliptic integrals is given in the form of detailed tables [i0], but 
some results can be obtained without resorting to them. 

For the transition to the two-dimensional problem, one should eliminate one of the prin- 
cipal curvatures in the term y'/(l + y'2)i/2x on the left side of Eq. (i): 

d 9' y 
d x  (1 v -  y " ) l / 2  ~-- % - -  a 2 ( 2 )  

The first integral of Eq. ~2) has the form [6] 

2sin 2 ~z h 2 - -  y 2 
- -  - -  + ~ , ( v - - h ) ,  . ( 3 )  

2 2a"- 
where ~ is the angle between the tangent at any point on the bubble contour (Fig. in) and the 
horizontal axis. Then the parameter ~ is simply expressed through the bubble height h and 
the contact angle @ [7]: 

h 2 6 
- cos 2 - -  (4) 

2a 2 h 2 
It is obvious that in both the two-dimensional and three-dimensional cases separation 

of a bubble along a section of finite area is impossible because the surface energy would 
then increase discontinuously by a finite amount, while the volume gravitational energy would 
decrease by an infinitely small amount with separation of the upper portion. Separation can 
occur only at nodes of the liquid-vapor interface in two cases: a) a node is formed at the 
boundary with a solid wall as the result of complete contraction of the bubble base; b) a 
node is produced by contraction to a point of a neck in the contour present above the plane. 
In the first type of separation, the bubble separates as a whole; in the second type, a por- 
tion of the vapor volume remains on the plane. 

To find the conditions for the existence of a neck above the solid surface, one should 
determine the ordinates Ye of the extremum points M and m on the contour, which correspond 
to ~ = ~/2, from the quadratic equation which is obtained by using Eq. (3): 

y~ - -  2a2~,y~ ' - -  2a 2 + 2a2~,h - -  h 2 = O. 

Considering the relation between ~ and h from Eq. (4), we arrive at 

y = a 2 ~ ( l •  ~ i  + 2cosO ) 
; ~ a  2 / �9 ( 5 )  

Equation (5) indicates that for good wettahility (cos 0 > O) a maximum x (the point M) always 
is present above the plane, but a minimum (point m) cannot appear whatever the value of h, 
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since the two roots have different signs in this case for any %. Consequently, the bubble 
cannot separate along a neck but separates completely. For small 5ubbles (% < 0) on an un- 

wettable surface the ordinates of both the maximum and minimum are negative, With further 
growth of the bubble, which is accompanied by an increase in %, the shape of the contour 
x(y) is such that there is generally neither a maximum nor minimum on it (for %2a2 <--2 cos 8). 
Only for sufficiently large positive values ha > /21cos 8 I does the contour have both great- 
est expansion and a neck above the plane. 

Representing Eq. (2) in the following form: 

d (sin ~) %dx -- ydx (2 ' ) 
~2 

and taking the definite integral between the limits x = 0 and x = X, we obtain 

S 
-- ~X q- sin O, (6) 

a 2 

where S i s  t he  b u b b l e  a r e a  bounded by the  c o n t o u r .  

I n  t he  r e g i o n  of  sma l l  c o n t a c t  a n g l e s  (up to  5 0 ~  i t  has  been  shown [9,  10] t h a t  d u r i n g  
the growth of a bubble its base first expands and then completely contracts. In the next re- 
gion of contact angles (up to 90 ~ the time for breakdown of equilibrium is associated with 
the appearance of an inflection point in the contour at the base and with the vanishing of %. 
For both these cases, it is easy to obtain from Eq. (6) 

/ - 4 S  o 2 D o ~  ~ - - - ~ -  (sinO//~a (7) 

f o r  t h e  e q u i v a l e n t  s e p a r a t i o n  d i a m e t e r .  

We now t u r n  to an a n a l y s i s  of  t he  c o n s i d e r a b l y  more complex p rob lem of  t h e  e v o l u t i o n  of  
a t h r e e - d i m e n s i o n a l  b u b b l e .  T r a n s f o r m i n g  t he  o r i g i n a l  e q u a t i o n  (1) to  

( x x2y kx2 ) l x2dy (8) 
d (1 ~- )C'z) 1/2 2a ~ 2 2a ~ 

and t a k i n g  the  d e f i n i t e  i n t e g r a l  be tween  the  l i m i t s  y = 0 and y = h,  we o b t a i n  a r e l a t i o n  
c o n n e c t i n g  one o f  the  most  i m p o r t a n t  b u b b l e  d i m e n s i o n s  -- t he  r a d i u s  X o f  the  b a s e  -- to  t he  
volume V and the  v a l u e s  of  the  p h y s i c a l  p a r a m e t e r s  

V 
XX ~ ~- 2sin OX -- (9) 

~ a  2 

We s o l v e  t h i s  e q u a t i o n  w i t h  r e s p e c t  t o  X and t r a n s f o r m  t o  d i m e n s i o n l e s s  q u a n t i t i e s  (X = X/a ,  
= V/a a, ~ = h a ) :  

f - - - -  

~ =  sinS~ 1+  1 + ~sin28 �9 (10) 

A n a l y s i s  of  t h e  l i m i t i n g  c a s e s  of  a s m a l l  b u b b l e  (or  t he  c a s e  o f  w e i g h t l e s s n e s s )  and o f  a 
l a r g e  b u b b l e  (~ § 0) makes i t  p o s s i b l e  t o  d e t e r m i n e  t h e  c o r r e c t  c h o i c e  of  s i g n  i n  Eq. (10 ) .  
The p l u s  s i g n  i s  t a k e n  from the  b e g i n n i n g  o f  b u b b l e  g rowth  u n t i l  t h e r e  i s  an i n f l e c t i o n  p o i n t  
in the contour. Both roots of Eq. (9) coincide at the time when an inflection point in the 
contour appears at the base of the bubble; the quantity %becomes equal to one of the prin- 
cipal curvatures, --sin 0/X. For a bubble continuing to grow after this, the minus sign in 
Eq. (I0) must be taken. 

Equation (i0) expresses the complex dependence of X on the volume V (or the bubble height 
h) and on the contact angle, since the factor % appearing in Eq. (i0) is a function of these 
same quantities in a form which has yet to be established. However, use of the variational 
treatment of 1, in accordance with which ~ = --(dFa/dV)/o for bubbles that are not too large, 
and of the analogy with the exact form of ~ for the two-dimensional problem makes it possible 
to express the Lagrangian multiplier in the first approximation as 

0 
4cos 2 _ _  

%= 2 
ff ( l l )  

C o n s i d e r i n g  t h e  g e n e r a l  n a t u r e  o f  t he  v a r i a t i o n  o f  ~ d e f i n e d  by Eq- (11 ) ,  we employ a l o n g  
with it the relationships %(h) and V(h) determined by a numerical method for analysis of the 
behavior of the base of a growing bubble. 

1 3 7 0  



In the numerical integration on a Minsk-32 computer of the system of two differential 
equations of first order obtained from Eq. (i), we determined the coordinates and curvature 
of the integral curve, the angle ~ for the slope of the tangent, and the volume of the bub- 
ble -- a body of rotation about the vertical axis of the portion of the integral curve from 
the apex to a point at which ~ is equal to a given contact angle. Since the portions of con- 
tours of bubbles with different e adjacent to the apex of the integral curve coincide, it is 
convenient to select a common origin for numerical integration (Fig. ib) and to take twice 
the average curvature ~ at the apex as an arbitrarily established parameter. On each inte- 
gral curve, the minimum value of the tangent slope ~min = ~min(P) corresponds to the inflec- 
tion point (on curves with large ~, the first inflection point from the apex). As ~ de- 
creases, ami n increases monotonically. For given e, therefore, the contours of bubbles of 
different size are formed by portions only of those curves for which ~ ~ p* [~min(~*) = e]. 
When p > p*, there are always two points on the integral curve where ~ = e which are, respec- 
tively, located above and below the inflection point of a given curve. In Fig. ib these are 
the points N and N' on curve 1 for which ~(N) = ~(N') = ~min(P2) = e; ~min(~s) E ~(K3) > ~. 

As the bubble grows, ~ decreases at first and the upper of the points with ~ = 6 are the 
end points of the contours lying in the boundary with the base of the bubble. When p reaches 
the value ~*, an inflection point is located on the contour at the base. Further shifting 
of the end of the contour continues along points such as N' with an increase in the curvature 
at the apex; the bubble is considerably different in shape from a spherical segment, an in- 
flection point is present in the contour above the base, and also a neck when ~ is large 
enough. One can determine whether a contour with the point N' on the perimeter of wetting 
corresponds to a stable form of bubble by considering the change in the volume V. If during 
the evolution of shape described, an initially increasing volume, having reached a maximum 
value Vmax, decreases, it is clear that the resultant shape is unstable. In this case, the 
portion PN' of the integral curve does not realize a minimum but rather a relative maximum of 
the total energy for the class of curves satisfying the original differential equation. 

According to data obtained from a numerical solution for angles e less than some eo near 
70 ~ , an increase in volume occurs up to the appearance of an inflection point in the contour 
at the boundary with the base. For larger 8, the bubble continues to grow after this time 
and Vma x is reached with an inflection point present above the base. 

To explain the reasons for this difference, we consider Eq. (i0) for X (before the ap- 
pearance of an inflection point in a contour with the plus sign). Considering the kind of 
variation in ~ as h increases, one can conclude that the first factor on the right side 
(--sin e/!~ increases along with bubble height, while the sum in parentheses decreases: the 
product %V, being negative, increases with respect to modulus, since V grows more rapidly 
(at first, ~h~) than l~I decreases. The behavior of the function ~-----[~VI for e = 30 ~ and 
e = i00 ~ is plotted in Fig. 2a,b on the basis of data from the numerical solution. Initially, 
the first effect predominates and X increases, but the decrease in the factor inside the 
parentheses becomes more important and the width of the base is reduced after passing through 
a maximum. Such behavior of the bubble base is in agreement with experimental observations 
[2,_18] and with the results of computer calculations on which the curves for the dependence 
of X on h shown in Fig. 2 are based. 

The vertical line A in Fig. 2 denotes the time of appearance of an inflection point in 
the contour at the base of a bubble with a bubble height h*; the line B denotes the achieve- 
ment of Vma x by the bubble, which is a criterion for breakdown of equilibrium and subsequent 
separation of the bubble [up to this limit, the curves ~ (h) and X(h) are shown as solid lines] 
the line C denotes the maximum value of h for a given 0 for all stable and unstable forms of 
the integral curves -- (dX/dh C) =--0% The dashed portions of the ~(h) and X(h) curves cor- 
respond to unstable forms of contours. 

At h*, ~ reaches its greatest value, ~ sin=e. The manner in which ~ approaches this 
value is important for the separation mechanism. If (d~/dh), r 0, i.e., the curve approaches 
the line ~ = ~ sin28 at an angle, the rapidity of the change in radius of the base with in- 
crease in height tends to --~ as shown by an analysis of the expression for the derivative 
dX/dh. If indeed (d~/dh), = O, i.e., the curve ~(h) is tangent to the line ~ = ~ sin28, the 
derivative dX/dh has no singularities. 

The first case is observed for small e and the limits A, B, and C then merge as is clear 
from Fig. 2a. Furthermore, the point of division of the ~(h) curve into solid and dashed 
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Fig. 2. Dependence of @ and radius X of bubble base on height 
h based on data from computer solution for contact angles 0 = 
30 ~ (a) and 0 = i00 ~ (b), 

TABLE i. Separation (maximum equilibrium) Diam- 
eter of Bubbles 

Do/a 

O, deg from numerical f rom Fritz from Eq. (14) 
solution formula 

18.95 
30.0 
42.6 
54.15 
'/0.9 
85.0 

0,404 
0,633 
O, 896 
1,13 
1,47 
1,76 

0,394 
O, 624 
O, 886 
1,13 
1,48 
1,77 

0,424 
0,634 
O, 890 
1,12 
1,42 
1,66 

branches (at h*) is a singularity. Physically, it is clear that the trend to ~ for the rate 
of decreases must have as a consequence complete constriction [which occurs in nonequilibrium 
fashion and is therefore not described by Eq. (i0)]. Such a mechanism of bubble separation 
is apparently only possible for those values of the contact angle e < eo for which the rate 
of contraction of the base, although not going to =, becomes sufficiently great. 

The second case occurs for large e. The appearance of an inflection point in the con- 
tour occurs long before the achievement of Vmax and is not associated with any peculiarities 
in the behavior of X; the base of the bubble is still expanding at this time for e > 90 ~ . 
When h becomes greater than h*, ~ begins to decrease so that Eq. (i0) does not lose meaning. 
With further increase in V, the inflection point rises above the plane and the slope of the 
tangent at this point increases. Such changes of the inflection point in a contour lead to 
transformation into a neck in the contour [7]; with contraction of this neck, the second type 
of separation occurs (it is obvious that this occurs in a nonequilibrium stage just like the 
total contraction of the base when 0 < Co). 

The fact that the cause of bubble separation is breakdown of equilibrium shape is re- 
flected in the circumstance that, based on data from the numerical solution, the quantity 
when V = V still has negative values (for e < 120 Q) and for small e is far from reaching 

max 

the value ~ = O, which corresponds to the limit for three-dimensional stability of a bubble. 

In the case of total separation, one can estimate the size of bubbles at the time of 
breakdown of equilibrium, relating it to the appearance of an inflection point on the contour. 
We use Eq. (ii), which from the computer data is satisfied to an accuracy of a few percent 
for e < 70 ~ up to h = h*. Then the condition for breakdown of equilibrium takes the form 

Vmax = ~ SiN2 0 ~,. (12)  
2 
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If one assumes that the shape of the bubble for small e differs slightly from a spherical 
segment (except for the region near the base), the volume of which is V = i/6~h3[i+3 tan2(e/ 
2) ], we obtain for the diameter of a sphere of volume Vma x (the separation diameter) 

( +)J~ Do---- V6-sin 0 1 .__3tg 2 a. (13) 
2 

D i s c a r d i n g  t he  s m a l l  c o r r e c t i o n s ,  we o b t a i n  a s i m p l e  e x p r e s s i o n  f o r  t h e  s e p a r a t i o n  d i a m e t e r ,  

D o l l  6- 's in  0 - -  a. (14) 
2 

As the data in Table 1 show, calculations based on the approximate analytic expression (14) 
in its region of applicability yield practically the same results as those from the semi- 
empirical Fritz formula Do = 0.0208e,~,a [17] obtained on the basis of a numerical solution [3] 
and extrapolated to the region of small e. 

Note that the limit of bubble equilibrium for good wettability used by us in the deter- 
mination of Do is reached earlier, though not much earlier, than the limit of stability with 
respect to perturbations of the interface calculated in [12]. 

As follows from Eq. (i0), the radius of the base of a bubble at the time of breakdown 
of equilibrium is 

~* = Vmax (15) 
a sin 0 

If the growth of the bubble occurs on a surface that is not smooth but contains microcavities 
(voids), they can have an effect on separation size only if the radius r of the mouth of a 
void (which is assumed to be conical) is greater than X*. Indeed, since breakdown of equilib- 
rium occurs during contraction of the base, Xma x > X* and in the expansion stage, a base hav- 
ing reached the lip of a cavity slides along a smooth surface. Subsequent changes in bubble 
shape are completely unrelated to the presence of microcavities as long as the line of wet- 
ting does not once again reach the lip before the time of breakdown of equilibrium. Using 
the above, we obtain for the critical radius r* of the mouth of a void, which divides separa- 
tion from a smooth surface (when r < r*) and separation from the lip of a void with good wet- 
tability, the expression 

6 1 / 8  - 
f t  

r * -  s i n - ~ -  t g - -  a. (i6) 
2 2 

This  e x p r e s s i o n  i s  i n  good ag reemen t  w i t h  d a t a  f o r  r *  [13] o b t a i n e d  by a n u m e r i c a l  method.  

NOTATION 

o, surface tension; p, p', densities of liquid and vapor; g, acceleration of gravity; a, 
capillary constant; e, contact angle; AT, temperature head; Ja, Jacob number; x and y, co- 
ordinates; y' = dy/dx; x' = dx/dy; x" = d2x/dy=; a, angle Of tangent with the horizontal at 
an arbitrary point on the contour; X and h, base radius and height of bubble; S, area bounded 
by contour of two-dimensional bubble; X, Lagrangian multiplier; V, bubble volume; X = X/a; 

= h/a;V = V/a3; ~ = ha;~ = I~VI; ~, curvature of bubble surface at apex; F, Fo, total and 
surface free energy of bubble; Do, separation diameter; r, radius of microcavity mouth. 
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INVESTIGATION OF THE HEAT AND MASS TRANSFER DURING 

SUBLIMATION OF ICE BY THE METHOD OF "THERMAL SHOCK" 

D. P. Lebedev and Lieh-Kue Ki UDC 536.422.1 

Experimental results are presented and computational dependences are obtained 
for the heat and mass transfer during sublimation of ice. 

The experimental and theoretical investigations of the ice sublimation mechanism in a 
vacuum known at this time [1-5] for thermoradiation energy fluxes supplied to the sublimation 
zone examine the "stationary" sublimation process (first period) characterized by a constant 
sublimation rate and a constant temperature distribution in the specimen with time. 

In reality, the process of sublimation parameter buildup (the heating period) [6] pre- 
cedes the first period. This period is ordinarily eliminated completely [3-5, 13] in the 
traditional method of investigating the sublimation process. The complexity of these inves- 
tigations is associated with the fact that the radiator itself is heated during the heating 
period and the radiation heat exchange of the subliming material with the radiator, with the 
walls of the vacuum chamber and other measuring attachments varies. In order to eliminate 
all secondary phenomena and to obtain more accurate experimental results, as well as to ap- 
proximate the experimental results to the classical physical problem, we used a more perfect 
model with instantaneous insertion of an energy supply for the complex investigation of sub- 
limation processes with thermoradiation supply of heat [6, 7]. This method of organizing the 
energy supply affords a possibility of obtaining well-founded experimental data,* which sig- 
nificantly expand the possibilities of a mathematical-physics analysis. 

Experimental Model 

The experimental model (Fig. i) for the investigation of nonstationary sublimation pro- 
cesses in a vacuum was a structural modification of the model examined in [6], which consists 
of using two symmetric infrared radiators to organize the thermoradiation energy supply. The 
investigations were conducted at pressures from 1 to 10 -3 mm Hg. 

The experimental ice specimen 1 is cylindrical in shape (32 mm in diameter~ 16 mm in 
thickness). To exclude uncheckable radiant fluxes from the specimen (vacuum chamber walls, 

*We investigate in this paper the ice sublimation process under the effect of an "infinite" 
duration heat pulse which we call the "thermal shock" method. 
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